
STROBE MVS
STROBE Interface Feature

Release 3.0

ii STROBE Interface Feature

This docum

Copyright 2
Copyright L

U.S. GOVER
restrictions
227.7202-1(
FAR 52.227-

This produc
disclosure, o
Corporation
conditions o

STROBE, iST

AD/Cycle, B
Mall, Visual
a registered
of Microsoft
RUMBA is a
Inc.

Adobe ® Acr
Adobe and A

All other co

Doc. CWSTUF3

January 21, 200
Please direct questions about STROBE MVS
or comments on this document to:

STROBE MVS Technical Support
Compuware Corporation
124 Mount Auburn Street

Cambridge MA 02138-5758
1-800-585-2802 or

1-617-661-3020
1-617-498-4010 (fax)

strobe-sup@compuware.com

Outside the USA and Canada, please contact
your local Compuware office or agent.
ent and the product referenced in it are subject to the following legends:

002 Compuware Corporation. All rights reserved. Unpublished rights reserved under the
aws of the United States.

NMENT RIGHTS-Use, duplication, or disclosure by the U.S. Government is subject to
as set forth in Compuware Corporation license agreement and as provided in DFARS
a) and 227.7202-3(a) (1995), DFARS 252.227-7013(c)(1)(ii) (OCT 1988), FAR 12.212(a) (1995),
19, or FAR 52.227-14 (ALT III), as applicable. Compuware Corporation.

t contains confidential information and trade secrets of Compuware Corporation. Use,
r reproduction is prohibited without the prior express written permission of Compuware
. Access is limited to authorized users. Use of this product is subject to the terms and
f the user's License Agreement with Compuware Corporation.

ROBE, and APMpower are trademarks or registered trademarks of Compuware Corporation.

ookManager, CICS, DB2, IBM, IMS/ESA, Language Environment, MQSeries, OS/2, Software
Gen, and VTAM are trademarks of International Business Machines Corporation. Microsoft is
trademark of Microsoft Corporation. Windows, Windows NT, and Windows 98 are trademarks
 Corporation. Attachmate and EXTRA! are registered trademarks of Attachmate Corporation.
registered trademark of Wall Data Inc. WRQ and Reflection are registered trademarks of WRQ,

obat ® Reader copyright © 1987-2001 Adobe Systems Incorporated. All rights reserved.
crobat are trademarks of Adobe Systems Incorporated.

mpany and product names are trademarks or registered trademarks of their respective owners.

A

3.

iii

Contents
Summary of Changes . v
Changes to the STROBE Interface Feature . v
Changes to this Manual . v

Introduction . vii
How This Manual Is Organized . vii
How to Use This Manual . vii
The STROBE Library . vii

STROBE Feature Manuals .viii
Online Documentation .viii

Online Help .viii
Other Compuware Application Performance Management Productsviii

iSTROBE. ix
SQL Analysis Feature . ix
APMpower . ix

Compuware APM Technical Support . ix
Compuware APM Training. ix
Compuware APM Service Offerings . x

APM Installation Assurance . x
Application Performance Management Consulting x
Application Performance Assessment . x

Chapter 1. Overview . 1-1
Data Collector Programs. .1-1

Identifying Modules .1-1
Identifying Transactions .1-1
Other Uses .1-2

Chapter 2. Data Collector Programs . 2-1
Functions of Data Collector Programs .2-1

Identifying Transactions .2-1
Identifying Active Load Modules .2-1
Supplementing STROBE Features .2-1
Other Data Collector Functions .2-2

Structure of Data Collector Programs. .2-2
Parameter List .2-2

DCCPCST .2-2
DCCLIST .2-3
Register Usage .2-3

Data Collector Communications Area .2-3
DCILCPSW. .2-4
DCILCTCB .2-4
DCILCBAS .2-4
DCILCSIZ .2-4
DCILCNMA .2-4
DCILCTRA .2-4
DCILCOLA .2-4
DCILCIDA .2-4

Supplementing Measurement Data .2-4
Identifying Active Load Modules .2-5
Identifying Transactions .2-5

iv STROBE Interface Feature
Operational Considerations . 2-5
Link Editing a Data Collector . 2-6
Invoking a Data Collector . 2-6
AMODE/RMODE Considerations . 2-6
Programming Considerations . 2-7

Appendix A. Examples of Data Collector Programs . A-1
Data Collector Program Showing Module Identification. A-1
Data Collector Program Showing 4GL Attribution. A-4

Index . I-1

v

Summary of Changes Sum_Chgs

This section lists the changes to the Interface Feature for STROBE MVS for Sysplex Release
3.0.

Changes to the STROBE Interface Feature
The technical content of the Interface Feature has not changed since STROBE MVS for
Sysplex Release 2.5.

Changes to this Manual
No changes have been made to this manual for STROBE MVS for Sysplex Release 3.0.

vi STROBE Interface Feature

vii
Introduction I nt ro

This manual describes the STROBE Interface Feature, a product that extends the
capabilities of the STROBE MVS Application Performance Measurement System by
providing an interface between STROBE and user-written data collector programs. This
manual explains how to write data collector programs to gather supplemental
performance data.

How This Manual Is Organized
Chapter 1, “Overview” presents an overview of the STROBE Interface Feature.

Chapter 2, “Data Collector Programs” describes data collector programs.

Appendix A, “Examples of Data Collector Programs” contains examples of data collector
programs.

How to Use This Manual
Read Chapter 1, “Overview” for an overview and definition of data collector programs.
Read Chapter 2, “Data Collector Programs” to learn how to write a data collector
program. Appendix A, “Examples of Data Collector Programs” provides two sample data
collector programs that you can use as bases for your own programs.

You need experience with IBM assembler and job control language (JCL) to write your
programs.

The STROBE Library
The STROBE base product manuals include:

• STROBE MVS Concepts and Facilities, document number CWSTGX3A

STROBE MVS Concepts and Facilities explains how to decide which programs and online
regions to measure, when to measure them, and how to interpret the reports in the
STROBE Performance Profile.

• STROBE MVS Messages, document number CWSTXM3A

STROBE MVS Messages lists all messages and abnormal termination (ABEND) codes,
describes how to interpret them, and in many cases suggests a corrective action.

• STROBE MVS System Programmer’s Guide, document number CWSTXI3A

The STROBE MVS System Programmer’s Guide explains how to install and maintain
STROBE.

• STROBE MVS User’s Guide, document number CWSTUX3A and the STROBE MVS User’s
Guide with Advanced Session Management, document number CWSTUA3A

The STROBE MVS User’s Guide explains how to use STROBE to measure application
performance. The STROBE MVS User’s Guide with Advanced Session Management explains
how to use STROBE with the STROBE Advanced Session Management Feature to

viii STROBE Interface Feature
measure application performance. Users who have the STROBE Advanced Session
Management Feature will use this manual rather than the STROBE MVS User’s Guide.

• STROBE MVS Application Performance Measurement System Quick Reference

The STROBE MVS Application Performance Measurement System Quick Reference is a
convenient reference for how to use STROBE and for interpreting the STROBE
Performance Profile.

STROBE Feature Manuals

These manuals describe the optional features of the STROBE MVS Application
Performance Measurement System. Each manual describes measurement concepts
applicable to and specific data made available by the feature.

• STROBE MVS User’s Guide with Advanced Session Management, document number
CWSTUA3A

• STROBE ADABAS/NATURAL Feature, document number CWSTUN3A

• STROBE CA-IDMS Feature, document number CWSTUR3A

• STROBE CICS Feature, document number CWSTUC3A

• STROBE COOL:Gen Feature, document number CWSTUG3A

• STROBE CSP Feature, document number CWSTUP3A

• STROBE DB2 Feature, document number CWSTUD3A

• STROBE IMS Feature, document number CWSTUI3A

• STROBE Interface Feature, document number CWSTUF3A

• STROBE Java Feature, document number CWSTUJ3A

• STROBE MQSeries Feature, document number CWSTUM3A

• STROBE UNIX System Services Feature, document number CWSTUU3A

Online Documentation

STROBE manuals are available in HTML, Adobe Acrobat PDF format, and IBM
BookManager format, on CD-ROM and at Compuware’s technical support Web site at
http://frontline.compuware.com.

Online Help
STROBE products provide the following online information:

• STROBE/ISPF Online Tutorials, Option T from the STROBE/ISPF STROBE OPTIONS
menu

• STROBE/ISPF Online Message Facility, Option M from the STROBE/ISPF STROBE
OPTIONS menu

Other Compuware Application Performance
Management Products

The following products and features work in conjunction with the STROBE MVS
Application Performance Measurement System. These tools extend the benefits of
application performance management (APM).

Introduction ix
iSTROBE

iSTROBE enables you to view and analyze STROBE Performance Profile data on a
workstation using a standard Web browser. Easy to install and easy to use, iSTROBE
guides you through the performance analysis process and offers recommendations for
improving performance. iSTROBE simplifies the performance analysis of applications
that you measure with STROBE. For more information on iSTROBE, see the iSTROBE
Getting Started Guide.

SQL Analysis Feature

The SQL Analysis Feature works in conjunction with STROBE and iSTROBE or APMpower
to supply access path analyses and database and SQL coding recommendations for DB2
applications measured by STROBE. The SQL Analysis Feature pinpoints the most
resource-consumptive static or dynamic SQL statements, explains why these statements
might be inefficient, and provides recommendations to improve the performance of the
DB2 application. For more information on the SQL Analysis Feature, see the STROBE MVS
User’s Guide or the STROBE MVS User’s Guide with Advanced Session Management.

APMpower

The APMpower Application Performance Analysis System extends the benefits of STROBE
to application developers who use workstations to develop, test, and maintain MVS
applications. Developers employ the APMpower graphical user interface and advanced
analytical aids to navigate the Performance Profile, analyze and improve application
performance, and share performance knowledge across the IS organization. For more
information about APMpower, see the APMpower documentation.

Compuware APM Technical Support
For North American customers, for technical support, please contact the Technical
Support department by telephone at (800) 585-2802 or (617) 661-3020, by fax at (617)
498-4010, or by e-mail at strobe-sup@compuware.com.

To access online technical support, visit Compuware’s FrontLine page on the World Wide
Web at http://frontline.compuware.com and select the product “STROBE and
APMpower.”

For other international customers, please contact your local Compuware office or
STROBE supplier.

Compuware APM Training
Compuware’s Education Resources Group offers a range of training options for
organizations that use STROBE, iSTROBE, and APMpower. To arrange Application
Performance Management training, please contact Compuware at 1-800-835-3190 or visit
Compuware’s Education Resources Group at http://www.compuware.com/training

For other international customers, please contact your local Compuware office or
STROBE supplier for a complete list of APM Training offerings.

x STROBE Interface Feature
Compuware APM Service Offerings
For North American customers, for information about current service offerings, please
contact your local Compuware sales office or call Compuware Corporate Headquarters at
1-800-COMPUWARE (266-7892) or visit Compuware’s APM Product page on the World
Wide Web at http://www.compuware.com/products/strobe.

For other international customers, please contact your local Compuware office or
STROBE supplier for a complete list of Services offerings.

APM Installation Assurance

The APM Installation Assurance service assists you in planning for, installing,
customizing and using APM products. The service will help you maximize the value and
benefits derived from the APM product family.

Consulting engineers work closely with your IT personnel to understand your operating
environment and your organization’s APM goals. The engineer will assist you in
developing a customization and installation plan for STROBE, iSTROBE, and APMpower.
The engineer will oversee the installation process and verify product readiness. The
engineer will also help set up measurement request schedules, request groups, history
records, AutoSTROBE measurement requests, and will verify the installation of the SQL
Analysis Feature.

With APM Installation Assurance services, your organization can immediately maximize
the value received from your investment in the APM product family. You will also benefit
from a fully customized installation that will enhance the product functionality and
increase the automation aspects of your APM initiatives.

Application Performance Management Consulting

The Application Performance Management (APM) Consulting services assist you in
identifying and resolving specific performance problems in your OS/390 business-critical
applications.

Using STROBE, iSTROBE, and APMpower, consulting engineers work closely with your IT
personnel to measure an application's performance, identify performance improvement
opportunities and make recommendations for implementing solutions.

With APM Consulting services, your organization cannot only resolve problems quickly
and effectively, but also gain the skills necessary to prevent application performance
degradation in the future.

Application Performance Assessment

The Application Performance Assessment (APA) service assists you in achieving a higher
level of performance for your OS/390 business-critical applications.

Using STROBE, iSTROBE, and APMpower, consulting engineers work closely with your IT
personnel to evaluate the efficiency of business-critical applications, identify
opportunities for improving performance and document the potential savings that can
result from implementing recommended solutions.

With APA services, you cannot only improve application performance quickly and
effectively, but also gain the knowledge and skills necessary to implement and sustain a
process-oriented application performance management (APM) program.

1-1

Chapter 1.

1Overview Chap 1

The STROBE Interface Feature allows you to extend STROBE capabilities by providing
interface support for user-written data collector programs.

 You can use data collector programs to:

• identify load modules that the system’s contents management facility does not load

• supplement the transaction or module-identifying information that STROBE supplies

• gather other types of subsystem-specific data when STROBE has no Feature for that
subsystem.

Data Collector Programs
A data collector program is a user-written program that STROBE invokes to supplement
performance data collected by STROBE and its features or collect performance data for
environments STROBE does not support.

Identifying Modules

If you want STROBE Performance Profile information on any modules not loaded by the
contents management facility, you need a data collector program to gather identifying
information on these modules. For example, if your application program does not load
modules with link, load, attach, or xctl (which employ the contents management
facility), you need to write a data collector program to gather information on these
modules. STROBE uses the module identifiers supplied by the data collector program as
the basis for STROBE execution and wait time reports.

You can also use a data collector program to identify the name of the executing module
when neither STROBE nor a STROBE Feature has been able to identify it.

Identifying Transactions

You can write a data collector to supplement transaction information gathered by the
STROBE Features. For example, you can write a data collector program to identify the
transaction that initiates execution of a transaction-processing module in a transaction-
driven subsystem. This transaction identifier forms the basis for reporting in the STROBE
Transaction Usage Summary and Transaction Usage by Control Section reports.

Also, many data communications subsystems invoke just one transaction for what may
be many different “subtransactions.” You can write a data collector program that looks at
activity beneath the transaction level to identify these "subtransactions."

1-2 STROBE Interface Feature
Other Uses

Besides module and transaction information, you can use a data collector program to
gather other types of performance information. Because of the fixed format of the
STROBE reports, the additional information you collect must fit into the eight-character
transaction field and the eight-character module name field. This information will
override the transaction or module information collected by STROBE. The column titles
on the reports, however, may not match the type of information now in the report.

A data collector program can also collect information to:

• identify the calling region for multiple user regions

• identify function names in application development systems

• identify 4GL statements or calling programs responsible for system overhead

• bolster the Performance Profile contents with any other system-specific information
(within size constraints).

2-1

Chapter 2.

2Data Collector Programs Chap 2

This chapter describes how data collector programs work and explains what information
is required in a data collector program. A data collector works very closely with STROBE.
Each time it samples the target job step, STROBE attempts to identify the name, load
address, and size of the module in which execution or wait is occurring. STROBE then
passes control to the appropriate data collector programs. If more than one task is
executing in a given sample, STROBE gives control to a data collector for each active task.

Functions of Data Collector Programs
You can use data collector programs to augment the data provided in the STROBE
Performance Profile. This section lists some of those uses.

Identifying Transactions

In transaction-driven subsystems, a data collector program can identify the transaction
in control. The data collector program supplies transaction names to STROBE, which uses
them to produce the Transaction Usage Summary and Transaction Usage by Control
Section reports of the Performance Profile.

When STROBE cannot assign activity to a single transaction, a data collector program can
generate one or more pseudo-transaction names. Pseudo-transaction names can, for
example, denote specific overhead functions.

Identifying Active Load Modules

As STROBE samples, it attempts to identify the module that is currently executing or
waiting. That module may be the one in which program execution began; it may be an
operating system support module (such as an SVC module or an I/O module); or it may
be a module that has been dynamically loaded during program execution.

If your application program has not loaded modules with the system contents
management facilities employed by the link, load, attach, or xctl macro instructions,
then STROBE cannot identify the module in which activity takes place. You can supply a
data collector program to report on modules that STROBE cannot identify so the
Performance Profile provides more complete information about the application.

Supplementing STROBE Features

You can write data collector programs to supplement information gathered by STROBE
Features. STROBE calls your data collector program after it calls any Features.

For example, STROBE identifies a transaction, which it may label as a true user
transaction or as system overhead. (A beginning period "." identifies the name of an
overhead transaction.) Your data collector program can change the pointer to the
transaction name to identify a subtransaction or to define overhead functions further.

When STROBE cannot identity the module in which execution or wait is occurring, your
data collector program may be able to do so.

2-2 STROBE Interface Feature
For each transaction name, STROBE produces a detail line in the Transaction Usage
Summary and a report subsection in the Transaction Usage by Control Section report of
the Performance Profile.

Other Data Collector Functions

For subsystems that are not transaction-driven, you can write a data collector program
that groups functionally related activities under a name that you specify. The data
collector program supplies this name to STROBE. STROBE reports activity associated with
this name in pseudo-control sections. The name appears in a detail line in the Program
Section Usage Summary report and as a header of a subreport in the Program Usage by
Procedure report.

Structure of Data Collector Programs
To write a data collector that STROBE can use requires you to follow certain conventions.
A data collector program must begin with the following structure:

STRBxxxx CSECT
USING *,15

BASE B BEGIN
DC AL1(FILL-*-1) length of identifier
DC CL17'STROBE COLLECTOR '
DC CL1' '
DC CL8'STRBxxxx'

IDSIZE EQU *-BASE
FILL DC XL(64-IDSIZE)'00'
ADDRLIST DS 0F

DC A(0) not used
DC A(0) not used

DCCSCPA DC A(0) not used
DCCPCST DC A(0) pseudo-csect table
DCCSW DC AL1(0) not used
DCCLIST DC AL3(PROGRAMS) list of programs supported
BEGIN DS 0H

Parameter List

You need to supply STROBE with some information so it can combine what your data
collector provides with the rest of the measurement data in the Performance Profile. The
parameter list contains the following fields:

DCCPCST

DCCPCST can contain the address of a table supplying the pseudo-control section names
that STROBE uses to condense its reports. STROBE reports activity in functionally related
system control program modules (whose names share a common three-character prefix)
as occurring in a single pseudo-control section. The name of the control section begins
with “.” and suggests its function. For example, activity reported in the pseudo-control
section .COBLIB comprises activity measured in modules whose names share the
common prefix ILB, which identifies some COBOL library modules.

To condense the reports for your modules, create a table that holds the definitions for the
pseudo-control sections and give the address of the table in the DCCPCST parameter of
the data collector program. Code each entry in the table by specifying a pseudo-control
section name and its identifying real module prefix.

DC CL7'AAAAAAA'
DC CL3'ABC'

Data Collector Programs 2-3
This code will cause STROBE to report in the Program Section Usage Summary report and
the Program Usage by Procedure report the processing of all modules beginning with the
characters ABC under the module .SYSTEM and the section .AAAAAAA.

You can specify more than one prefix for a pseudo-control section. For example, you can
also specify:

DC CL7'AAAAAAA'
DC CL3'DEF'

You can supply as many as 25 pseudo-control section entries. Terminate the list with
X'FF'.

DCCLIST

DCCLIST contains the address of a list specifying the names of programs supported by
the data collector. This list ensures that a data collector program is invoked only for the
application program or online subsystem for which it is written. STROBE scans the list,
matching each entry against the name of the subject program and the names contained
in the MAPPROGRAM parameter list supplied by the user when the user submits a
measurement request. (See Chapters 2 and 3 of the STROBE MVS User’s Guide.) STROBE
calls the data collector only when it finds a match. If you explicitly name your data
collector program when you submit a measurement request, STROBE does not refer to
this list. (See Invoking a Data Collector.)

You can supply any number of programs. Terminate the list with X'80'. To allow STROBE
to call your data collector program each time it measures, code a field of asterisks
(CL8'********') in the list.

Register Usage

A data collector program uses the standard IBM linkage conventions. When STROBE calls
the data collector, the following registers are set:

The data collector returns control to STROBE through register 14. All registers must be
saved and restored.

Data Collector Communications Area

The data collector communications area provides for communication between STROBE
and the data collector program. The format is as follows:

DCILCOMM DSECT data collector communications area
DCILCPSW DS F current user task PSW instruction address
DCILCTCB DS F address of the current user TCB
DCILCBAS DS F load address of the module in control
DCILCSIZ DS F size of the module in control
DCILCNMA DS F address of the name of module in control
DCILCTRA DS F address of the name of transaction in control
DCILCOLA DS F data collector work address
DCILCIDA DS F address of the data collector ID field

R1 address of the data collector communications area (described below)

R13 address of a save area provided by STROBE

R14 return address of STROBE

R15 base address for the data collector program.

2-4 STROBE Interface Feature
When STROBE calls a data collector, STROBE provides the following information in the
data collector communications area.

DCILCPSW

DCILCPSW contains the instruction address from the program status word (PSW) for the
task that is active at the time STROBE takes the sample. This field is provided for
information only. STROBE does not act on modifications to it.

DCILCTCB

DCILCTCB contains the address of the task control block (TCB) of the user task in control
at the time the sample is taken. This field is provided for information only. STROBE does
not act on modifications to it.

DCILCBAS

When STROBE has identified the module that is executing or waiting, DCILCBAS
contains the load address of the module.

DCILCSIZ

When STROBE has identified the module that is executing or waiting, DCILCSIZ contains
the size of the module in bytes.

DCILCNMA

When STROBE has identified the module that is executing or waiting, DCILCNMA
provides the address of an eight-byte field containing the name of the module in control.
The field must be left-justified and padded with blanks. STROBE sets DCILCNMA to zero
if neither STROBE nor any other data collectors have identified the module in control.

DCILCTRA

When a data collector has identified a transaction, DCILCTRA provides the address of an
eight-byte field containing the name of the transaction. The field must be left-justified
and padded with blanks.

DCILCOLA

DCILCOLA is a four-byte field that is available to your data collector program for any
purpose you choose. For example, you can use it to anchor storage acquired via
GETMAIN.

DCILCIDA

DCILCIDA contains the address of an eight-byte field supplying information about
measured programs or subsystems that is printed in the Measurement Parameters column
under the field labeled SUBSYSTEM in the Measurement Session Data report. STROBE
initializes this field to zero on each invocation of the data collector.

Supplementing Measurement Data
Your data collector program can supplement data that STROBE collects. All changes
caused by the data collector must be indicated in the data collector communications
area. Your data collector should not change the PSW instruction address or the TCB
address. The data collector program can change:

Data Collector Programs 2-5
• the address of the name of a transaction in control at the time of the sample

• the address of the name of a module waiting or executing

• the load address of the module

• the reported size of the module

• the address in the information field.

Identifying Active Load Modules

A data collector can examine the DCILCNMA field to determine if STROBE has identified
the module that is executing or waiting. (The DCILCBAS and DCILCSIZ fields are not
reliable indicators; they may contain zeros when STROBE identifies activity in an SVC
module.) When a data collector program identifies the module, it places the address of
the module name in DCILCNMA. The data collector also places the module base in
DCILCBAS, and the module size in DCILCSIZ.

STROBE verifies that the PSW instruction address supplied in the data collector
communications area fits within the size and base supplied by the data collector
program. If the address does not fit, STROBE does not record the module data that the
data collector supplies.

If the identified module is also one defined as a pseudo-control section (see “DCCPCST,”
above), a data collector can force STROBE to accept the module by:

• setting the value of DCILCBAS to zero

• setting the size value to X'7FFFFFFF'.

If neither STROBE nor any of the active data collector programs can identify the active
load module, STROBE attributes execution or wait to a pseudo-control section
corresponding to the location of the current PSW (for example, to .PRIVATE if the PSW is
within the private area of the address space).

Identifying Transactions

In transaction-driven subsystems, STROBE may not be able to identify the transaction in
control. If a data collector program can identify the transaction, it places the address of
the name of the transaction in the DCILCTRA field. The name must be in an eight-byte
field, left-justified and padded with blanks.

Your data collector program can also attribute activity to pseudo-transactions that may
identify overhead functions. If a data collector program cannot otherwise identify a
transaction, it should supply a pseudo-transaction name so that STROBE can account for
all activity in the transaction reports.

When a data collector program identifies a transaction, STROBE attributes subsequent
CPU time to the transaction until the data collector either identifies another transaction
or supplies a null transaction identifier (binary zeros) in the field addressed by
DCILCTRA.

Operational Considerations
Besides the program structure and reporting requirements you must meet for a data
collector, several operation factors should be taken into account and are described in this
section.

2-6 STROBE Interface Feature
Link Editing a Data Collector

STROBE loads a data collector program whenever it finds within a load module library a
program with the name STRBxxxx, where xxxx is the unique four-character prefix of the
name of the target program. To allow STROBE to automatically load your data collector
program for the appropriate programs, link edit your data collector with the associated
name. If the data collector supports more than one program, supply a STRBxxxx alias for
each program whose name begins with a unique four-character prefix. For example:

• to link edit a data collector that STROBE automatically invokes whenever it measures
programs MYPROG, MYPROG1, and MYPR1234, code the NAME statement for the
link editor input:

NAME STRBMYPR

• to link edit a data collector that STROBE automatically invokes whenever it measures
programs MYPROG, OURPROG, and YOURPROG, code:

ALIAS STRBOURP
ALIAS STRBYOUR
NAME STRBMYPR

To make your data collector program available to any job step that you want to measure,
link edit your data collector program into an authorized link list library. If you do not use
an authorized link list library for your data collector, you can specify the name of an
authorized library when you add a measurement request through the STROBE command
language. (See Invoking a Data Collector.)

Invoking a Data Collector

If you have used the naming conventions described above, STROBE automatically
invokes your data collector when it encounters a program with the appropriate four-
character prefix, provided that it meets the verification requirements described for the
DCCLIST parameter.

Alternatively, if you use the STROBE command language to submit your measurement
request, you can specify the name of your data collector and the data set name of the
authorized library in which it resides with the DCC and DCCLIB operands with the ADD
or CHANGE commands. If you use STROBE/ISPF to submit the measurement request, you
can specify the name of your data collector on the STROBE - DATA COLLECTORS panel.

When you explicitly specify a data collector name, STROBE loads and calls the data
collector program, checking only for the data collector's identifying constant “STROBE
COLLECTOR”. (See the previous section called Structure of Data Collector Programs.)
When you specify more than one data collector, STROBE executes them in the order you
have specified.

AMODE/RMODE Considerations

When STROBE measures programs, it executes and calls a data collector program in 31-
bit addressing mode (AMODE 31), supervisor state, and in the protect key of the target
program. If your data collector cannot operate in AMODE 31, you can change it to
operate in 24-bit mode (AMODE 24). The program must, however, return control to
STROBE in 31-bit mode.

Data Collector Programs 2-7
The following code is suggested to change from 31-bit mode to 24-bit mode:

L R1,16 load CVT address
TM 116(R1),X'80' is this XA
BZ *+10 no
LA R1,*+6 get next instruction address
BSM 0,R1 go to 24-bit mode
This code is suggested to change from 24-bit mode to 31-bit mode:
L R1,16 load CVT address
TM 116(R1),X'80' is this XA
BZ *+14 no
LA R1,*+10 get next instruction address
O R1,=XL4'80000000' set bit for 31-bit mode
BSM 0,R1 go to 31-bit mode

Link edit your data collector in RMODE 24.

Programming Considerations

Because STROBE calls the data collector each time it takes a measurement sample, code it
to perform efficiently.

Your data collector program must be re-entrant.

Your data collector program must determine if the target program is one that it can
measure. If not, it must return control immediately to STROBE.

STROBE calls user-written data collectors in user key supervisor state, which is the key of the
measured address space.

To obtain storage, specify the storage protection key on the GETMAIN or STORAGE
OBTAIN macro. For example:

IPK R2 determine our key
LA R0,STORAGE_SIZE indicate storage size
STORAGE OBTAIN,ADDR=(8),SIZE=(0),KEY(2),LOC(ANY,ANY),COND=YES
LTR R15,R15 work ok?
BNZ ERROR bif no

Because the Supervisor State allows privileged instructions and authorized services to be
issued from the user-written data collector, review all customer-written data collectors to
ensure that there are no integrity exposures.

To facilitate the process, we have provided a 256-byte workarea in the correct key. When
STROBE calls the user-written data, Register 13 points to a 72-byte save area. Following
the savearea, there is a 256-byte workarea in the correct key. The workarea is not
persistent; its contents will not be preserved across calls to the data collector. You may
use the following code to access the workarea

STM 14,12,12(13) save caller’s registers
LA R2,72(,R13) get workarea address
ST R02,8(R13) forward chain pointer
ST R13,4(R02) backward chain pointer
LR R13,R02 R13 -> workarea
USING WORKAREA,R13
WORKAREA DSECT

SAVEAREA DS 18F
FREESTORAGE DS 46F

2-8 STROBE Interface Feature

A-1

Appendix A.Appendix A.

AExamples of Data Collector Programs App A

This appendix contains two data collector programs that you can use as examples to help
you write your own programs as explained in Chapter 2, “Data Collector Programs”.

Data Collector Program Showing Module Identification

* *
* STRBTSMD - SAMPLE DATA COLLECTOR FOR STROBE *
* *
* THE PURPOSE OF THIS DATA COLLECTOR IS TO GIVE AN EXAMPLE OF *
* A DATA COLLECTOR THAT IDENTIFIES THE NAME OF A MODULE, WITH *
* ACTIVITY/WAIT, IN A SYSTEM THAT PERFORMS ITS OWN CONTENTS *
* SUPERVISION. *
* *
* IF THE MODULE NAME HAS NOT BEEN IDENTIFIED BY STROBE, THEN *
* THIS DATA COLLECTOR WILL RUN THE CONTROL BLOCK STRUCTURES, *
* ASSOCIATED WITH THIS SUBSYSTEM, THAT REPRESENT WHERE PROGRAMS *
* WERE LOADED INTO STORAGE AND ATTEMPT TO IDENTIFY THE PSW *
* THAT WAS PASSED IN THE PARAMETER LIST. *
* *
* FOR STROBE REL. 2.2.1 AND HIGHER, THIS EXIT MUST BE CODED *
* RE-ENTERANT, AND THE LOAD MODULE MUST BE MARKED WITH THE *
* RENT (RE-ENTERANT) ATTRIBUTE. BE SURE TO SPECIFY OPTION *
* ’RENT’ IN THE LINKAGE EDITOR STEP FOR THIS MODULE. *
* *
* REVISION HISTORY: *
* *
* REV DATE CHANGE BY *
* --- ------- -- --- *
* 00 27NOV95 NEW MODULE XXX *
* *

STRBTSMD CSECT
STRBTSMD AMODE 31
STRBTSMD RMODE 24
R0 EQU 0 BRANCH WORK REGISTER
R1 EQU 1 BRANCH WORK REGISTER
R2 EQU 2 WORK REGISTER
R3 EQU 3 WORK REGISTER
R4 EQU 4 WORK REGISTER
R5 EQU 5 WORK REGISTER
R6 EQU 6 WORK REGISTER
R7 EQU 7 WORK REGISTER
R8 EQU 8 WORK REGISTER
R9 EQU 9 WORK REGISTER
R10 EQU 10 WORK REGISTER
R11 EQU 11 A(DCILCOMM)
R12 EQU 12 BASE REGISTER
R13 EQU 13 A(INPUT SAVEAREA)
R14 EQU 14 BRANCH WORK REGISTER
R15 EQU 15 BRANCH WORK REGISTER

SPACE
B BEGIN-STRBTSMD(R15) BRANCH AROUND HEADER
DC AL1(FILL-*-1) LENGTH OF IDENTIFIER
DC CL17'STROBE COLLECTOR '

A-2 STROBE Interface Feature
DC CL1' '
DC CL8'STRBTSMD'
DC CL1' '

GENID DC CL4'G-00'
IDSIZE EQU *-STRBTSMD CALC SIZE OF HEADER
FILL DC XL(64-IDSIZE)'00' FILL TO EP+64
*
* THE FOLLOWING TABLE MUST BEGIN AT ENTRY POINT +64 BYTES.
*
ADDRLIST DS 0F

DC 3A(0) UNUSED
DCCPCST DC A(PCSECTBL) A(PSEUDO-CSECT TABLE)

DC AL1(0) UNUSED
DCCLIST DC AL3(PROGRAMS) LIST OF PROGRAMS SUPPORTED
*
* PSEUDO-CSECT TABLE
*
PCSECTBL DS 0F

DC CL7'TSMSYST' USE PSEUDO NAME TSMSYST
DC CL3'TSM' FOR ALL MODS TSM*
DC X'FF' MARK END OF TABLE

*
* LIST OF SUPPORTED PROGRAMS
*
PROGRAMS DS 0F

DC CL8'TSMDRIVR' RUN WHENEVER INVOKED
DC X'80' MARK END OF TABLE

*
* START OF COLLECTOR CODE
*
BEGIN DS 0H

STM R14,R12,12(R13) SAVE REGS
LR R12,R15 SET NEW BASE
USING STRBTSMD,R12 ESTABLISH ADDRESSABILITY
LR R11,R1 GET A(DCILCOMM)
USING DCILCOMM,R11 ESTABLISH ADDRESSABILITY

*
* CHECK TO SEE IF THE MODULE HAS ALREADY BEEN IDENTIFIED.
*

L R3,DCILCNMA GET A(MODULE NAME)
LTR R3,R3 IS IT THERE?
BZ IDMOD NO, TRY TO ID MODULE
CLI 0(R3),X'00' MODULE NAME SUPPLIED?
BNE EXIT YES, NOTHING TO DO

*
* ATTEMPT TO ID THE MODULE. IN ORDER TO DO THIS WE MUST FIRST GET
* ADDRESSABILITY TO TSMANCH, THE TSM SYSTEM COMMON ANCHOR CONTROL
* BLOCK, WHICH SHOULD BE POINTED TO VIA THE R7 SAVED IN THE CURRENT
* TCB.
*
IDMOD DS 0H

L R3,DCILCTCB @(CURRENT TCB)
SLL R3,8 CLEAN FOR A
SRL R3,8 24-BIT ADDRESS
L R3,TCBGRS7-TCB(R3) GET SAVED R7
USING TSMANCH,R3 ESTABLISH ADDRESSABILITY
CLC TSMEYEC,=CL8'TSMANCH' IS IT THE ANCHOR CB?
BNE EXIT NO, NOT INTERESTED

*
* GET THE ADDRESS OF THE FIRST TSMPROG, TSM SYSTEM LOADED PROGRAM
* CONTROL BLOCK, AND RUN THE CHAIN ATTEMPTING TO IDENTIFY THE PSW
* ADDRESS PASSED IN THE PARAMETER LIST.
*

L R4,TSMPROGL GET A(1ST TSMPROG CB)
LTR R4,R4 IS IT THERE?
BZ EXIT NO, CAN'T ID PSW
DROP R3 DROP ADDRESS - TSMANCH
USING TSMPROG,R4 ESTABLISH ADDRESSABILITY

Examples of Data Collector Programs A-3
L R1,DCILCPSW GET PSW FROM PARMLIST
LA R1,0(R1) AND CLEAR HIGH-ORDER BIT
B TSMPLOOP+4 ENTER LOOP

TSMPLOOP DS 0H
L R4,TPROGNXT @(NEXT TSMPROG CB)
LTR R4,R4 ADDRESS FOUND?
BZ EXIT NO, CAN'T ID PSW
L R2,TPROGADD GET A(LOADED PROGRAM)
LA R2,0(R2) AND CLEAR HIGH-ORDER BIT
CR R1,R2 PSW ABOVE PROGRAM START
BL TSMPLOOP NO, TRY NEXT TSMPROG CB
L R3,TPROGLN GET LENGTH OF LOADED PROG
LA R4,0(R2,R3) CALC END OF LOADED PROG
CR R1,R4 PSW IN LOADED PROGRAM?
BNL TSMPLOOP NO, TRY NEXT TSMPROG CB

*
* THE CURRENT TSMPROG CONTROL BLOCK REPRESENTS THE PROGRAM WITH
* OBSERVED ACTIVITY/WAIT. SAVE THE ADDRESS OF THE PROGRAM NAME, THE
* BASE ADDRESS OF THE PROGRAM, AND THE PROGRAM LENGTH IN THE
* PARAMETER LIST.
*

LA R15,TPROGNAM GET A(LOADED PROGRAM NAME)
ST R15,DCILCNMA AND SAVE IN PARMLIST
ST R2,DCILCBAS SAVE BASE ADDR IN PARMLIST
ST R3,DCILCSIZ SAVE SIZE IN PARMLIST
DROP R3 DROP ADDRESS - TSMPROG

*
* PROGRAM EXIT
*
EXIT DS 0H

LM R14,R12,12(R13) RESTORE REGS
BR R14 RETURN TO CALLER
DROP R11 DROP ADDRESS - DCILCOMM
DROP R12 DROP ADDRESS - BASE REG
EJECT

*
DC2_LEN EQU *-STRBTSMD LENGTH OF CSECT
*
* DATA COLLECTOR COMMUNICATION AREA DSECT
*
DCILCOMM DSECT
DCILCPSW DS F CURRENT TASK PSW ADDR
DCILCTCB DS F A(CURRENT TASK TCB)
DCILCBAS DS F A(LOAD MOD IN CONTROL)
DCILCSIZ DS F SIZE OF LOAD MOD IN CNTROL
DCILCNMA DS F A(LOAD MOD IN CTL NAME)
DCILCTRA DS F A(TRANSACTION IN CONTROL)
DCILCOLA DS F A(WORK AREA)
DCILCIDA DS F A(COLLECTOR ID FIELD)

EJECT
*
* MVS DSECTS
*

PRINT NOGEN
IKJTCB TCB
EJECT

*
* TSM SYSTEM CONTROL BLOCKS
*

PRINT GEN
TSMANCH TSM SYSTEM ANCHOR CB
TSMPROG TSM SYSTEM LOADED PROG CB
END

A-4 STROBE Interface Feature
Data Collector Program Showing 4GL Attribution

* *
* STRBDC1 - SAMPLE DATA COLLECTOR FOR STROBE *
* *
* THE PURPOSE OF THIS DATA COLLECTOR IS TO GIVE AN EXAMPLE OF *
* A DATA COLLECTOR THAT SUPPLIES PROGRAM NAME AND STATEMENT *
* NUMBER FOR THE 4GL PROGRAM THAT ORIGINATED THE OBSERVED *
* ACTIVITY/WAIT. *
* *
* IF THE OBSERVED ACTIVITY/WAIT IS IN A MVS LOADED MODULE, *
* TINTERPT (A FICTIONAL INTERPRETER), THEN THE DATA COLLECTOR *
* WILL NAVIGATE FROM THE R8 SAVED IN THE TCB THROUGH A SERIES *
* OF SUBSYSTEM SPECIFIC CONTROL BLOCKS TO THE STRUCTURE THAT *
* REPRESENTS THE USER WRITTEN 4GL PROGRAM THAT IS CURRENTLY *
* EXECUTING. *
* *
* ONCE THE CONTROL BLOCK REPRESENTING THE 4GL PROGRAM IN CONTROL *
* IS LOCATED, THE PROGRAM NAME AND STATEMENT NUMBER WILL BE *
* EXTRACTED AND SAVED AS THE TRANSACTION NAME AND PROGRAM NAME *
* RESPECTIVELY. *
* *
* THIS TYPE OF RECORDING WILL CAUSE THE FULL IMPACT OF A SINGLE *
* PROGRAM ON THE WHOLE SYSTEM TO BE ASSESSED IN THE 'TRANSACTION *
* USAGE SUMMARY' REPORT AND THE BREAK DOWN OF THE IMPACT ON EACH *
* STATEMENT WITHIN A PARTICULAR PROGRAM IN THE 'TRANSACTION *
* USAGE BY CONTROL SECTION' REPORT. *
* *
* FOR STROBE REL. 2.2.1 AND HIGHER, THIS EXIT MUST BE CODED *
* RE-ENTERANT, AND THE LOAD MODULE MUST BE MARKED WITH THE *
* RENT (RE-ENTERANT) ATTRIBUTE. BE SURE TO SPECIFY OPTION *
* ’RENT’ IN THE LINKAGE EDITOR STEP FOR THIS MODULE. *
* *
* *
* *
* REVISION HISTORY: *
* *
* REV DATE CHANGE BY *
* --- ------- -- --- *
* 00 27NOV95 NEW MODULE XXX *
* *

STRBDC1 CSECT
STRBDC1 AMODE 31
STRBDC1 RMODE 24
R0 EQU 0 BRANCH WORK REGISTER
R1 EQU 1 BRANCH WORK REGISTER
R2 EQU 2 WORK REGISTER
R3 EQU 3 WORK REGISTER
R4 EQU 4 WORK REGISTER
R5 EQU 5 WORK REGISTER
R6 EQU 6 WORK REGISTER
R7 EQU 7 WORK REGISTER
R8 EQU 8 WORK REGISTER
R9 EQU 9 WORK REGISTER
R10 EQU 10 A(LOCAL WORK AREA)
R11 EQU 11 A(DCILCOMM)
R12 EQU 12 BASE REGISTER
R13 EQU 13 A(SAVEAREA)
R14 EQU 14 BRANCH WORK REGISTER
R15 EQU 15 BRANCH WORK REGISTER

SPACE
B BEGIN-STRBDC1(R15) BRANCH AROUND HEADER
DC AL1(FILL-*-1) LENGTH OF IDENTIFIER
DC CL17'STROBE COLLECTOR '

Examples of Data Collector Programs A-5
DC CL1' '
DC CL8'STRBDC1'
DC CL1' '

GENID DC CL4'G-00'
IDSIZE EQU *-STRBDC1 CALC SIZE OF HEADER
FILL DC XL(64-IDSIZE)'00' FILL TO EP+64
*
* THE FOLLOWING TABLE MUST BEGIN AT ENTRY POINT +64 BYTES.
*
ADDRLIST DS 0F

DC 3A(0) UNUSED
DCCPCST DC A(PCSECTBL) A(PSEUDO-CSECT TABLE)

DC AL1(0) UNUSED
DCCLIST DC AL3(PROGRAMS) LIST OF PROGRAMS SUPPORTED
*
* PSEUDO-CSECT TABLE
*
PCSECTBL DS 0F

DC X'FF' MARK END OF TABLE
*
* LIST OF SUPPORTED PROGRAMS
*
PROGRAMS DS 0F

DC CL8'********' RUN WHENEVER INVOKED
DC X'80' MARK END OF TABLE

*
* START OF COLLECTOR CODE
*
BEGIN DS 0H

STM R14,R12,12(R13) SAVE REGS
LR R12,R15 SET NEW BASE
USING STRBDC1,R12 ESTABLISH ADDRESSABILITY
LR R11,R1 GET A(DCILCOMM)
USING DCILCOMM,R11 ESTABLISH ADDRESSABILITY

*
* GET THE ADDRESS OF THE LOCAL WORK AREA. IF IT HASN'T BEEN
* ALLOCATED THEN ALLOCATE AND INITIALIZE IT.
*

USING LWA,R10 ESTABLISH ADDRESSABILITY
L R10,DCILCOLA GET A(LWA)
LTR R10,R10 UNALLOCATED?
BZ ALLOCLWA YES, GO ALLOCATE IT
CLC LWA(4),DC1EYEC OUR EYECATCH THERE?
BE GOT_LWA YUP, WE ALREADY HAVE IT

ALLOCLWA DS 0H
LA R2,0 CLEAR REGISTER 2
IPK 0 GET PSW KEY INTO R2
LA R3,LWALEN LENGTH LWA STORAGE
STORAGE OBTAIN, ACQUIRE LWA STORAGE X

LENGTH=(R3), LENGTH X
LOC=(ANY), ABOVE THE LINE X
SP=130, SUBPOOL 130 X
KEY=(R2), IN USER’S KEY X
COND=NO MUST GET IT

LTR R15,R15 DID WE GET IT?
BNZ EXITNCHN NO, GO EXIT
LR R10,R1 @(ACQUIRED STORAGE)
LR R4,R10 CLEAR
LA R5,LWALEN THE
LA R6,DC1EYEC LOCAL
LA R7,L'DC1EYEC WORK
MVCL R4,R6 AREA

GOT_LWA DS 0H
ST R13,SAVEAREA+4 CHAIN
LA R13,SAVEAREA SAVEAREA

*
* MAKE SURE THE ACTIVITY/WAIT IN TINTERPT, THE 4GL INTERPRETER.
*

A-6 STROBE Interface Feature
L R1,DCILCPSW GET THE CURRENT PSW
LA R1,0(R1) AND CLEAN IT UP
BAL R14,CHKFORTI GO CHECK FOR TINTERPT
LTR R15,R15 IS THIS IT?
BNZ EXIT NO, WE AREN'T INTERESTED

*
* GET R8 FROM THE CURRENT TCB AND VERIFY THAT ITS IT TMAINCB, THE
* INTERPRETER ANCHOR CONTROL BLOCK.
*

L R3,DCILCTCB @(CURRENT TCB)
SLL R3,8 CLEAN FOR A
SRL R3,8 24-BIT ADDRESS
L R3,TCBGRS8-TCB(R3) GET SAVED R8
CLC 0(8,R3),=CL8'TMAINCB' IS IT TMAINCB?
BNE EXIT NO, NOT INTERESTED

*
* NAVIGATE FROM TMAINCB TO THE CURRENT TASK CONTROL BLOCK, TCURTASK,
* AND THEN TO THE CURRENT TASK'S PROGRAM CONTROL BLOCK, TCURPROG.
* TCURPROG CONTAINS THE NAME OF THE PROGRAM AND STATEMENT NUMBER
* CURRENTLY BEING PROCESSED BY THE INTERPRETER.
*

L R3,X'138'(R3) @(TCURTASK)
LTR R3,R3 ADDRESS FOUND?
BZ EXIT NO, NOT INTERESTED
L R3,X'24'(R3) @(TCURPROG)
LTR R3,R3 ADDRESS FOUND?
BZ EXIT NO, NOT INTERESTED

*
* R3 CURRENTLY POINTS AT THE TCURPROG CONTROL BLOCK. EXTRACT THE
* ADDRESS OF THE PROGRAM NAME AND STATEMENT NUMBER BEING PROCESSED BY
* THE INTERPRETER AND SAVE THE INFORMATION INTO DCILCOMM.
*

LA R15,X'18'(R3) GET A(8-CHAR PROG NAME)
ST R15,DCILCTRA AND SAVE AS TRAN NAME
MVC LWASTMTN(2),=CL2' ' SET 1ST 2-CHARS TO SPACES
MVC LWASTMTN+2(6),X'20'(R3) GET 6-CHAR STMT #
LA R15,LWASTMTN GET A(8-CHAR STMT NUMBER)
ST R15,DCILCTRA AND SAVE AS PROG NAME

*
* PROGRAM EXIT
*
EXIT DS 0H

LA R13,4(R13) GET A(ENTRY SAVEAREA)
EXITNCHN DS 0H

LM R14,R12,12(R13) RESTORE REGS
BR R14 RETURN TO CALLER
EJECT

**
* *
* SEARCH THE JPQ TO VERIFY THAT THE PSW ADDRESS PASSED IN R1 *
* REPRESENTS ACTIVIY/WAIT IN TINTERPT, THE TEST INTERPRETER. *
* *
* REGS ON ENTRY: *
* R1 - ADDRESS TO BE IDENTIFIED. THIS ADDRESS IS ASSUMED TO *
* BE ALREADY 'CLEANED' FOR EITHER A 24- OR 31-BIT ADDRESS *
* PRIOR TO INVOKING THIS ROUTINE *
* R11 - A(DCILCOMM) *
* R12 - BASE REG *
* R13 - A(INPUT SAVEAREA) *
* R14 - RETURN ADDRESS *
* *
* EXIT REGS: (ONLY CHANGED REGS) *
* R15 - 0, IF THE PSW ADDRESS PASSED IN R1 REPRESENTS ACTIVITY/ *
* WAIT IN TINTERPT. *
* R15 - 4, IF THE PSW ADDRESS PASSED IN R1 DOES NOT REPRESENT *
* ACTIVITY/WAIT IN TINTERPT. *
* *

Examples of Data Collector Programs A-7
**
CHKFORTI DS 0H

STM R14,R12,12(R13) SAVE REGS
LTR R1,R1 ADDRESS PASSED?
BZ CFTIRC4 NO, RETURN W/RC=4
L R15,DCILCTCB @(CURRENT TCB)
L R15,TCBJSTCB-TCB(R15) @(JSTCB)
L R15,TCBJPQ-TCB(R15) @(1ST CDE)
B CFTILOOP+4 ENTER LOOP

CFTILOOP DS 0H
L R15,CDCHAIN-CDENTRY(R15) @(NEXT CDE)
LTR R15,R15 IS IT THERE?
BZ CFTIRC4 NO, RETURN W/RC=4
TM CDATTR2-CDENTRY(R15),CDXLE XTLST BUILT?
BZ CFTILOOP NO, TRY NEXT CDE
TM CDATTR-CDENTRY(R15),CDMIN MINOR CDE?
BO CFTILOOP YES, TRY NEXT CDE
TM CDATTRB-CDENTRY(R15),CDIDENTY ALIAS?
BO CFTILOOP YES, TRY NEXT CDE
L R3,CDXLMJP-CDENTRY(R15) @(XTLST)
LTR R3,R3 IS IT THERE?
BZ CFTILOOP NO, TRY NEXT CDE
L R2,XTLMSBAD-XTLST(R3) GET A(LOAD MODULE) AND
LA R2,0(R2) TURN OFF HIGH-ORDER BIT
CR R1,R2 ADDR BEFORE A(LOAD MOD)?
BL CFTILOOP YUP, TRY THE NEXT CDE
L R3,XTLMSBLA-XTLST(R3) GET LOAD MODULE LENGTH
SLL R3,8 AND CLEAN OFF THE
SRL R3,8 FIRST BYTE
LA R2,0(R3,R2) CALC END ADDR OF LOAD MOD
CR R1,R2 ADDRESS IN LOAD MOD?
BNL CFTILOOP NO, TRY NEXT CDE
CLC CDNAME-CDENTRY(8,R15),=CL8'TINTERPT' IS IT TINTERPT?
BNE CFTIRC4 NO, RETURN W/RC=4
LA R15,0 YES, SET RC=0
B CFTIEXIT AND GO RETURN

CFTIRC4 DS 0H
LA R15,4 SET RC TO NOT TINTERPT

CFTIEXIT DS 0H
L R14,12(R13) RESTORE R14
LM R0,R12,20(R13) R0-R12
BR R14 RETURN TO CALLER
DROP R10 DROP ADDRESS - LWA
DROP R11 DROP ADDRESS - DCILCOMM
DROP R12 DROP ADDRESS - BASE REG

*
* CONSTANTS
*
DC1EYEC DC CL4'DC1 ' LWA EYECATCH
*
DCOM_LEN EQU *-STRBDC1 LENGTH OF CSECT
*
* DATA COLLECTOR COMMUNICATION AREA DSECT
*
DCILCOMM DSECT
DCILCPSW DS F CURRENT TASK PSW ADDR
DCILCTCB DS F A(CURRENT TASK TCB)
DCILCBAS DS F A(LOAD MOD IN CONTROL)
DCILCSIZ DS F SIZE OF LOAD MOD IN CNTROL
DCILCNMA DS F A(LOAD MOD IN CTL NAME)
DCILCTRA DS F A(TRANSACTION IN CONTROL)
DCILCOLA DS F A(WORK AREA)
DCILCIDA DS F A(COLLECTOR ID FIELD)

EJECT
*
* LOCAL WORK AREA DSECT
*
LWA DSECT

A-8 STROBE Interface Feature
SAVEAREA DS 18F SAVEAREA 18 FULLWORDS
LWASTMTN DS CL8 ID'D MODULE NAME
LWALEN EQU *-LWA

EJECT
*
* MVS DSECTS
*

PRINT NOGEN
IKJTCB TCB
IHARB RB
IHACDE CDE
IHAXTLST XTLST
END

 I-1
Index

Special Characters

.COBLIB, 2-2

.PRIVATE, 2-5

A

ADD command
specifying data collector name, 2-6

addressing mode, 2-6
AMODE, 2-6

C

calling sequence, 2-1
CHANGE command, 2-6
combining data collectors, 2-1
controlling module

load address, 2-4
name of, 2-4
size of, 2-4

controlling transaction, name of, 2-4

D

data collector, 1-1, 2-1, 2-7
addressing mode of, 2-6
base address of, 2-3
calling sequence, 2-1
communications area, 2-3–2-4

address of, 2-3
examples

identifying transactions, A-1
supplementing CICS data, A-4

forcing STROBE to load, 2-3
identifying

transactions, 2-5
invoking, 2-6
modifying sample data with, 2-4
non-transaction-driven subsystems, 2-2
operational considerations, 2-7
order of invocation, 2-6
programming considerations, 2-7
register usage, 2-3
specifying

the library name, 2-6
structure, 2-4
supplementing, 2-1
transferring control to user-written programs, 2-1
uses of, 1-1–1-2

DCC operand, 2-6
DCCLIB operand, 2-6
DCCLIST, 2-3
DCCPCST, 2-2
DCILCBAS, 2-3–2-4
DCILCIDA, 2-3
DCILCNMA, 2-3–2-5
DCILCOLA, 2-3–2-4
DCILCOMM, 2-3
DCILCPSW, 2-3–2-4
DCILCSIZ, 2-3–2-4
DCILCTCB, 2-3–2-4
DCILCTRA, 2-3–2-5

I

identifying
subsystem-specific data, 1-2

information field, 2-5
invoking

a data collector, 2-6
order of, 2-6

L

library name, specifying for a data collector, 2-6
link editing

a data collector, 2-6
load module, identifying, 2-1, 2-5

M

MAPPROGRAM
parameter, 2-3

modifying
sample data, 2-4

O

operational considerations for a data collector, 2-7

P

parameter list, 2-2
Performance Profile

condensing reports, 2-2
data collectors, 2-1

Program Section Usage Summary report, 2-2–2-3
Program Usage by Procedure report, 2-2–2-3
programming considerations, 2-7
pseudo-control sections, 2-2, 2-5
pseudo-transactions, 2-1

supplying a name for, 2-5
PSW instruction address, 2-4–2-5

I-2 STROBE Interface Feature
R

register usage, 2-3
RMODE, 2-7

S

sample data, modifying, 2-4
save area, address of, 2-3
STROBE/ISPF

specifying data collector name and library, 2-6
subsystem-specific

fields, identifying, 1-2
supplementing data collectors, 2-1
system contents management facilities, 2-1

T

task control block (TCB)
address of, 2-4

Transaction Usage by Control Section report, 1-1, 2-1
Transaction Usage Summary report, 1-1, 2-1
transactions

identifying, 1-1, 2-1, 2-4–2-5

	Summary of Changes
	Changes to the STROBE Interface Feature
	Changes to this Manual

	Introduction
	How This Manual Is Organized
	How to Use This Manual
	The STROBE Library
	STROBE Feature Manuals
	Online Documentation

	Online Help
	Other Compuware Application Performance Management Products
	iSTROBE
	SQL Analysis Feature
	APMpower

	Compuware APM Technical Support
	Compuware APM Training
	Compuware APM Service Offerings
	APM Installation Assurance
	Application Performance Management Consulting
	Application Performance Assessment

	Overview
	Data Collector Programs
	Identifying Modules
	Identifying Transactions
	Other Uses

	Data Collector Programs
	Functions of Data Collector Programs
	Identifying Transactions
	Identifying Active Load Modules
	Supplementing STROBE Features
	Other Data Collector Functions

	Structure of Data Collector Programs
	Parameter List
	DCCPCST
	DCCLIST
	Register Usage

	Data Collector Communications Area
	DCILCPSW
	DCILCTCB
	DCILCBAS
	DCILCSIZ
	DCILCNMA
	DCILCTRA
	DCILCOLA
	DCILCIDA

	Supplementing Measurement Data
	Identifying Active Load Modules
	Identifying Transactions

	Operational Considerations
	Link Editing a Data Collector
	Invoking a Data Collector
	AMODE/RMODE Considerations
	Programming Considerations

	Examples of Data Collector Programs
	Data Collector Program Showing Module Identification
	Data Collector Program Showing 4GL Attribution

	Index

